Fuzzy database and Fuzzy logic Using Triangular and Trapezoidal Fuzzy Number for coronavirus disease - 2019 diagnosis

Ambadas Deshmukh

Vidyalankar Institute of Technology Mumbai

Email: ambadas.deshmukh@vit.edu.in

Ashok S. Mhaske

Dada Patil Mahavidhyalaya, Karjat-Ahmednagar

Email: mhaske.math@gmail.com

K. L. Bondar

N. E. S Science College Nanded

Email: klbondar_75@rediffmail.com

Dr. Arun Jadhav

D S M College Parbhani

Email: arunbjadhao@gmail.com

Article Info Page Number: 8196-8207 Publication Issue: Vol. 71 No. 4 (2022)

Article History Article Received: 25 March 2022 Revised: 30 April 2022 Accepted: 15 June 2022 Abstract:

The objective of this article is to introduce correct information for coronavirus disease when there is uncertainty in a medical fuzzy database. Global health crisis had a deep impact due to outbreak of the coronavirus disease 2019. COVID-19 is a reminder that well-prepared decisionmaking is essential for effective health management. Fuzzy database and fuzzy logic methods are best ways to reduce this ambiguity in medical science. Thirteen scientific databases are selected that affect the patient most in coronavirus. The inputs are fuzzy trapezoidal numbers according to the range that they fall in and output is fuzzy triangular number. The main risk issues of coronavirus disease according to the medical Science are Age, Blood Pressure, blood Sugar, Heart Rate, WBC, CRP, Hemoglobin, Platelet-to-lymphocyte ratio, lymphocyte, neutrophil, monocytes, Hepatitis-B and Liver function therefor there are thirteen input variables. The output is the coronavirus disease condition shown in linguistic terms such as very healthy, healthy critical and very critical. Keyword: Fuzzy, COVID-19, Mat-lab, Python, Triangular, Trapezoidal, linguistic, Inference, Madani

Introduction:

Although the modern world sees significant changes in science and technology, part of the uncertainty cannot be avoided by any branch of science, engineering, medicine, and administration. It is well known that an important factor in the development of the modern concept of uncertainty was the publication of a seminar paper by Loft A. Zadeh in year 1965. The degree of membership lies between the interval [0,1]. The crisp set defined in such a way

that we can classify it into two groups such as members and non-members. (Khehra, 2021) introduced Fuzzy Logic And Hybrid Based Approaches For The Risk Of Heart Disease Detection. (Prakash, 2018) invented new method using Study Of Fuzzy Logic In Medical Data Analytics. (Dr. K. L. Bodar, 2016)Fuzzy Database And Fuzzy Logic For Fetal Growth Condition.

Some Basic Definition:

1. Fuzzy Set:

If X is a universe of discourse and x be any particular element of X, then a fuzzy set \widetilde{A} defined on X may be written as a collection of ordered pairs $\widetilde{A} = \{(x, \mu_{\widetilde{A}}(x)) : x \in X\}$. Where each pair $(x, \mu_{\widetilde{A}}(x))$ is called a singleton and $\mu_{\widetilde{A}}(x)$ is membership function which maps X to [0,1]

2. Fuzzy Number:

A Fuzzy set à is a Fuzzy set on the real line R must be satisfy the following conditions

a. There exist at least one $x_0 \in R$ such that $\mu_{\widetilde{A}}(x_0)=1$.

b. $\mu_{\widetilde{A}}(x)$ is piecewise continuous.

c. \widetilde{A} must be normal and convex.

3. **Triangular Fuzzy Number:** A triangular fuzzy number \widetilde{A} or simply triangular number represented with three points as follows $\widetilde{A} = (a_1, a_2, a_3)$ hold the following conditions.

a. a_1 to a_2 membership function is increasing function

b. a_2 to a_3 membership function is decreasing function.

c. $a_1 \le a_2 \le a_3$

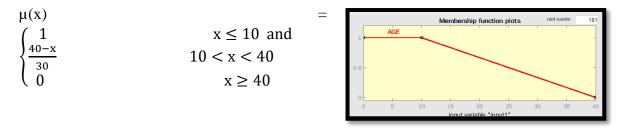
Its membership function is defined as follows

$$\mu_{\widetilde{A}}(x) \!\!=\!\! \begin{cases} \!\!\! \frac{x-a_1}{a_2-a_1} & a_1 \leq x < a_2 \\ 1 & x = a_2 \\ \!\!\! \frac{(a_3-x)}{a_3-a_2} & a_2 < x \leq a_3 \end{cases}$$

4. **Trapezoidal Fuzzy Number:** A Trapezoidal fuzzy number \widetilde{A} or simply trapezoidal number represented with four points as follows $\widetilde{A} = (a_1, a_2, a_3, a_4)$ hold the following conditions.

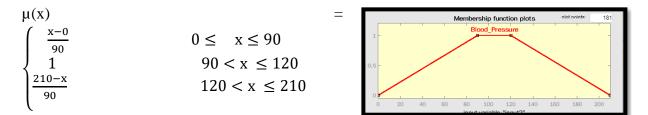
- a. a_1 to a_2 membership function is increasing function
- b. a_2 to a_3 membership function is 1.
- c. a_3 to a_4 membership function is decreasing function.
- d. $a_1 \le a_2 \le a_3 \le a_4$

Its membership function is defined as follows

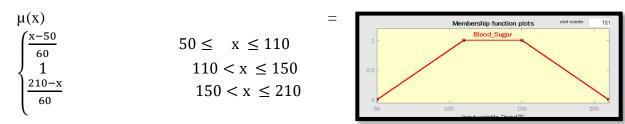

$$\mu_{\widetilde{A}}(x) \!\!=\!\! \begin{cases} \frac{x\!-\!a_1}{a_2\!-\!a_1} & ; \text{ if } a_1 \leq x < a_2 \\ 1 & ; \text{ if } a_2 \leq x \leq a_3 \\ \frac{(a_4\!-\!x)}{a_4\!-\!a_3} & ; \text{ if } a_3 < x \leq a_4 \end{cases}$$

Vol. 71 No. 4 (2022) http://philstat.org.ph

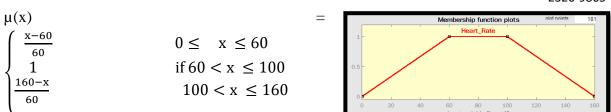
Input Variables:


Age:

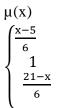
We estimate that infection in individuals 10 years of age is approximately very low as compare to of adults aged over 10 years and risk factor increases rapidly to 90% of aged over 40 years.

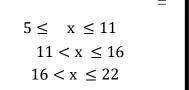

Blood Pressure:

There is a possibility that having high or low blood pressure might put patient at greater risk for severe illness and death with COVID-19.


Diabetes (blood Sugar):

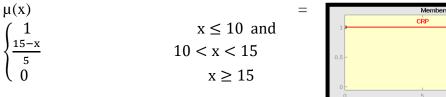
High and low blood sugar level and low weakens the immune system and makes it less able to fight with the virus.


Heart Rate (bpm): High or low heart rate to response to fever or inflammation.


Mathematical Statistician and Engineering Applications ISSN: 2094-0343 2326-9865

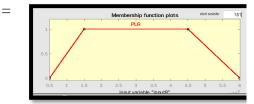
Hemoglobin:

Patients with anemia will have low or high hemoglobin levels and anemia seems to be associated with an enhanced risk of severe COVID-19 infection.


WBC (White Blood Cell):

More severe illness and death in people with COVID-19 who had a high WBC count. A number of other studies have found that lower WBC counts6 or elevated WBC counts with decreased levels of lymphocytes

$\mu(\mathbf{x})$						
$\left(\frac{x-2000}{2500}\right)$	$2000 \le x \le 4500$					
$ \begin{bmatrix} 2500 \\ 1 \\ 11000-x} \\ 2500 \end{bmatrix} $	$4500 < x \le 11000$					
	$11000 < x \le 13500$					


CRP(**C**-reactive protein): CRP level is used for early diagnosis of pneumonia.

PLR PLR, LYM, NEU, MON:

PLR PLR, LYM, NEU, MON of severe patients were significantly higher than those of nonsevere patients in coronavirus disease

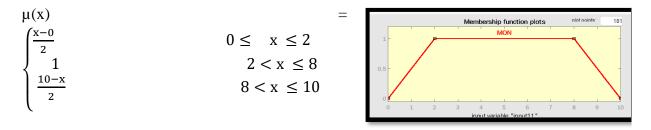
 $50000 \le x \le 150000$ $150000 < x \le 450000$ $450000 < x \le 600000$

 $\mu(\mathbf{x})$

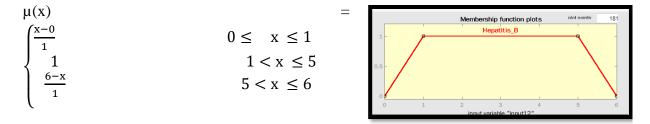
x-50000

150000

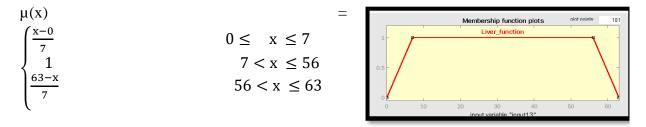
1 600000-x

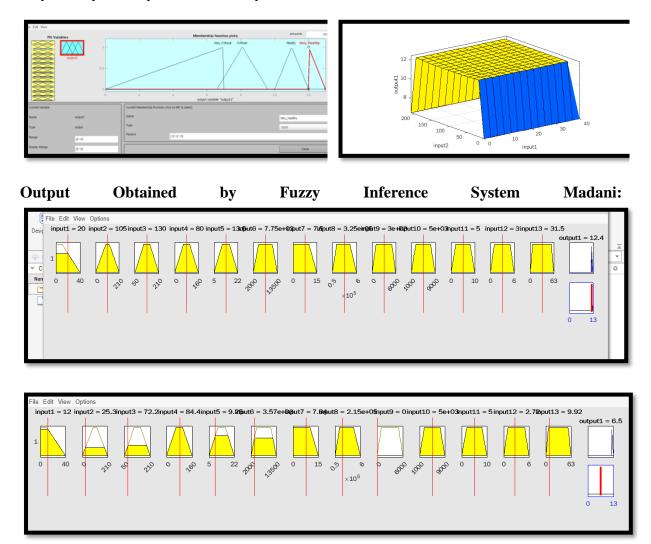

150000

μ(x)	=		Mem	bership functio	on plots	nlot noints:	181
$\begin{cases} \frac{x-0}{1000} \\ 1 \\ \frac{6000-x}{1000} \end{cases}$	$0 \le x \le 1000$ $1000 < x \le 5000$ $5000 < x \le 6000$			LYM 3000	4000	5000	6000
•		innut variable "innut9"					


NEU (neutrophil):

μ(x)	=	Membership function plots nint nints 181
$\begin{cases} \frac{x-1000}{1500} \\ 1 \\ \frac{9000-x}{1500} \end{cases}$	$\begin{array}{rl} 1000 \leq & x \leq 2500 \\ 2500 < x \leq 7500 \\ 7500 < x \leq 9000 \end{array}$	1 0.5 1000 2000 3000 4000 5000 6000 7000 8000 9000 input variable "longt10"


MON (monocyte):


Hepatitis B: people having Hepatitis B are increased risk of severe illness if they get COVID-19 infection

Liver function: people with liver disease, might be at higher risk for severe illness from COVID-19

Output: The output is the coronavirus disease condition shown in linguistic terms such as very healthy, healthy critical and very critical.

Python Program:

age=int(input("Enter Your Age value="))

Vol. 71 No. 4 (2022) http://philstat.org.ph if(age<=10):

out1=1

elif(10< age and age<=40):

out1=(40-age)/30

```
elif(age>40):
```

out1=0

print(out1)

bp=int(input("Enter Your Blood Pressure value="))

```
if(0<=bp and bp<=90):
```

out2=(bp-0)/90

```
elif(90< bp and bp<=120):
```

out2=1

```
elif(120<bp and bp<=210):
```

out2=(210-bp)/90

print(out2)

```
bs=int(input("Enter Your Blood Sugar value="))
```

```
if(50<=bs and bs<=110):
```

out3=(bs-50)/60

```
elif(110< bs and bs<=150):
```

```
out3=1
```

```
elif(150<bs and bs<=210):
```

```
out3=(210-bs)/60
```

print(out3)

hr=int(input("Enter Your Heart Rate (bpm) value="))

```
if(0<=hr and hr<=60):
```

out4=(hr-0)/60

```
elif(60< hr and hr<=100):
```

out4=1

```
elif(100<hr and hr<=160):
```

out4=(160-hr)/60

print(out4)

hb=int(input("Enter Your Hemoglobin value="))

```
if(5 \le hb and hb \le 11):
```

out5=(hb-5)/6

```
elif(11< hb and hb<=16):
```

out5=1

elif(16<hb and hb<=22):

out5=(22-hb)/6

print(out5)

WBC=int(input("Enter Your WBC value="))

```
if(2000<=WBC and WBC<=4500):
```

out6=(WBC-2000)/2500

```
elif(4500< WBC and WBC<=11000):
```

out6=1

```
elif(11000<WBC and WBC<=13500):
```

```
out6=(13500-WBC)/2500
```

print(out6)

CRP=int(input("Enter Your CRP value="))

if(CRP<=10):

out7=1

elif(10< CRP and CRP<=15):

out7=(15-CRP)/5

elif(15<CRP):

out7=0

print(out7)

```
PLR=int(input("Enter Your PLR value="))
```

```
if(50000<=PLR and PLR<=150000):
```

```
out8=(PLR-50000)/150000
```

```
elif(150000< PLR and PLR<=450000):
```

out8=1

```
elif(450000<PLR and PLR<=600000):
```

```
out8=(600000-PLR)/150000
```

```
print(out8)
```

```
LYM=int(input("Enter Your LYM value="))
```

```
if(0<=LYM and LYM<=1000):
```

out9=(LYM-0)/1000

```
elif(1000< LYM and LYM<=5000):
```

out9=1

```
elif(5000<LYM and LYM<=6000):
```

```
out9=(6000-LYM)/1000
```

print(out9)

```
NEU=int(input("Enter Your NEU value="))
```

```
if(0<=NEU and NEU<=1000):
```

```
out10=(NEU-0)/1000
```

```
elif(1000< NEU and NEU<=5000):
```

out10=1

```
elif(5000<NEU and NEU<=6000):
```

```
out10=(6000-NEU)/1000
```

print(out10)

MON=int(input("Enter Your MON value="))

```
if(0<=MON and MON<=2):
```

```
out11=(MON-0)/2
```

```
elif(2< MON and MON<=8):
```

out11=1

```
elif(8<MON and MON<=10):
```

```
out11=(10-MON)/2
```

print(out11)

```
HEPB=int(input("Enter Your hepatitis B value="))
```

```
if(0<=HEPB and HEPB<=1):
```

out12=(HEPB-0)/1

```
elif(1< HEPB and HEPB<=5):
```

out12=1

elif(5<HEPB and HEPB<=6):

```
out12=(6-HEPB)/1
```

print(out12)

LF=int(input("Enter Your liver function value="))

```
if(0<=LF and LF<=7):
```

out13=(LF-0)/7

```
elif(7< LF and LF<=56):
```

out13=1

```
elif(56<LF and LF<=63):
```

```
out13=(63-LF)/1
```

print(out13)

```
sum = out1 + out2 + out3 + out4 + out5 + out7 + out9 + out10 + out11 + out12 + out13
```

```
print("Your Score out of 13 =",sum)
```

```
if (12<=sum and sum<=13):
```

print("Very Healty")

```
elif(10<=sum and sum<12):
```

print("Healthy")

```
elif(7<=sum and sum<10):
```

print("Critical")

elif(sum<7):

print("Very Critical")

Output Obtained (Python Program):

Conclusion:

In this chapter we discussed a new method based on the fuzzy theory has been developed to solve the problem of fetal coronavirus disease under the fuzzy environment. In our proposed fuzzy database system we use the fuzzy inference rules using mat-lab and python programming to build fuzzy rules. The advantage of our developed system is that we can use the available data existing in the current database systems for decision making. In future, we want to extend our work doing more research by using fuzzy database for other diseases like cancer, diabetes and Brain diseases etc.

References:

- 1. Phuong, N., Vladik Kreinovich, 2001, "Fuzzy Logic And Its Applications In Medicine", International Journal Of Medical Informatics, Vol- 62, No. 2-3, Pp.165-173.
- 2. Shradhanjali, 2012. "Fuzzy Petry Net Application: Heart Disease Diagnosis", International Conference On Computing And Control Engineering
- 3. Ashok S Mhaske, K L Bondar. "Fuzzy Transportation By Using Monte Carlo Method." Advances In Fuzzy Mathematics 12 (2017): 111-127.
- 4. Ashok S Mhaske, K L Bondar. "Fuzzy Database And Fuzzy Logic For Fetal Growth Condition." Asian Journal Of Fuzzy And Applied Mathematics 03, No. 03 (2015): 95-104.
- 5. Dr. K. L. Bodar, M. A. (2016). Fuzzy Transportation Problem with Error by Using Lagrange's Polynomial. The Journal of Fuzzy Mathematics, 24(4), 1066-8950.

- 6. Ashok Sahebrao Mhaske, Kirankumar Laxmanrao Bondar. "Fuzzy Transportation Problem By Using Triangular, Pentagonal And Heptagonal Fuzzy Numbers With Lagrange's Polynomial To Approximate Fuzzy Cost For Nonagon And Hendecagon." International Journal Of Fuzzy System Applications 9, No. 1 (2020): 112-129.
- Ambadas Deshmukh, Dr. Arun Jadhav, Ashok S. Mhaske, K. L. Bondar "Fuzzy Transportation Problem By Using Triangularfuzzy Numbers With Ranking Using Area Of Trapezium, Rectangle And Centroid At Different Level Of A-Cut." Turkish Journal Of Computer And Mathematics Education12,No.12, 3941-3951
- Mr. Waghmare S. G., Dr. Mhaske A. S., Mr. Nalavde A. A. "New Group Structure Of Compatible Systems Of First Order Partial Differential Equations" International Journal Of Mathematics Trends And Technology, Volume 67 Issue 9, ISSN: 2231 – 5373/Doi:10.14445/22315373/IJMTT-V67I9P513, 114-117
- 9. S. Mohan, C. Thirumalai, G. Srivastava, Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques. IEEE Access. 7, 81542–81554 (2019)
- H. Kahtan, K. Z. Zamli, W. N. Ashikin, W. A. Fatthi, A. Abdullah, N. Shahaiyusniezam, Heart Disease Diagnosis Using Fuzzy Logic, In: Proceedings Of International Conference On Software And Computer Applications, IEEE, Pp. 297–301 (2018)